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A micromechanics model developed in the previous work which incorporated the effect of 
dynamic recovery by diffusion of atoms was applied to the interpretation of the high- 
temperature deformation of metallic materials with ellipsoidal second-phase particles. A 
theoretical discussion based on this model was made on the effect of several factors including 
shape, particle size, orientation and elastic modulus of second phase on the work-hardening 
behaviour of the materials at high temperature. A good correlation was found between the 
result of the calculations and those of the experiments obtained by the present authors or 
other investigators of several kinds of metallic materials with ellipsoidal second-phase par- 
ticles. The dynamic recovery model used in this study can be applied to the understanding of 
high-temperature deformation behaviour or to the prediction of the possible recovery mech- 
anism of the materials. 

1. In troduct ion  
The dispersion strengthening in metallic materials is 
strongly affected by several factors including volume 
fraction, shape, particle size, orientation and rigidity 
of second phase. Tanaka and Mori [1] discussed the 
work-hardening behaviour of a material with a disc- 
like, spherical or needle-like inclusion, using Eshelby's 
equivalent inclusion method [2]. Recently, Mori and 
Tokushige [3] and Matsuura [4] separately investi- 
gated the static and dynamic recovery of metals 
strengthened by spherical second-phase particles, 
based on the analysis of the climbing motion of misfit 
dislocations at the interface of a particle, which were 
introduced by plastic deformation of the matrix 
phase. The climbing rate of those dislocations at the 
interface can be affected by size, shape and orientation 
of second-phase particles in the recovery process at 
high temperature. However, the climb process of those 
dislocations is very complicated due to the interaction 
between the dislocations in each slip system. There- 
fore, it is difficult to know the effect of dynamic recov- 
ery from each dislocation motion alone. 

Ashby [5] considered the static recovery of a 
dispersion-hardened metal, using a continuum mech- 
anics model in which the recovery by diffusion of 
atoms is taken into account. It is obvious in the recov- 
ery process that atoms tend to migrate in the direction 
to diminish the misfit between second-phase particle 
and matrix (i.e. in the direction to decrease the elastic 
strain energy of second-phase particles and matrix). 
Therefore, the effect of dynamic recovery can be 
predicted to some extent by considering the average 
atom migration, even if the climbing motion of each 
dislocation is not known [6]. The authors revealed that 
the dynamic recovery of metallic materials with 

spherical precipitates can be explained by a micro- 
mechanics model [6] similar to that proposed by 
Ashby. 

The effect of dynamic recovery on the work- 
hardening behaviour can depend on several factors 
such as size, shape and orientation of second-phase 
particles, difference in elastic moduli between second 
phase and matrix, as well as the rate-controlling mech- 
anism which governs the recovery process. From both 
investigative and practical view points, it is important 
to know the effects of those factors on the high- 
temperature work-hardening behaviour of metallic 
materials. In this study, a theoretical discussion was 
made on the work-hardening behaviour of metallic 
materials with ellipsoidal second-phase particles at 
high temperature, based on a micromechanics model 
developed in the previous study [6] which incor- 
porated the dynamic recovery effect of diffusion of 
atoms. The micromechanics model in this study is 
based on the assumption that the misfit strain between 
ellipsoidal second phase and matrix is uniformly 
accommodated by diffusion of atoms in the dynamic 
recovery process. The result of calculations based on 
this model was then compared with the experimental 
results by the present authors or other investigators of 
metallic materials with ellipsoidal second-phase par- 
ticles. 

2. Stress-stra in  curve at high 
temperature  

2.1. Gibbs free energy and stress-strain 
curve 

It is assumed that the dispersion-hardened metal con- 
sidered in this study involves N particles of ellipsoidal 
second phase ((x~ + x~)/a 2 -b x~/c 2 = 1; volume of a 
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particle: V--4zra2c/3; aspect ratio of particle: 
x = c/a) with elastic modulus, C ~  (#*: rigidity; v*: 
Poisson's ratio), different from that of the matrix, C,)kt 
(#: rigidity; v: Poisson's ratio). The deformation of the 
material under an applied stress, a3A3 or O-Al, was con- 
sidered in this study, because the work-hardening 
behaviour can depend on the relative orientations of 
particle habit and applied stress. Suppose that the 
uniform plastic deformation, 5f3 = - 25"1 = - 25*2  

= 5" (or e*l = - 2s'2 = - 25* 3 = s*), occurs only in 
the matrix under an applied stress, 0"3A3 (or a A). It is 
also assumed here that second-phase particles do not 
deform plastically, and that the interaction among the 
stress fields of particles is negligible because of the 
small volume fraction of second phase. 

According to Tanaka and Mori [1], the Gibbs free 
energy of the material, G, is expressed with the volume 
fraction of second phase, f ( =  NV/Vo;  where V0 is the 
total volume of the material), by the following equa- 
tion. 

G = 1/2Al~5*2JVo + BoAg*fV0 + o-05*V 0 

- aAe*V0 + E0(a A) (1) 

where a A is an external stress, a~ or o -A. In the above 
equation, the first term is the elastic strain energy of 
the material, and the second term is the interaction 
energy between external stress and internal stress field. 
The third and fourth terms are the energy dissipation 
and the decrease in external potential, respectively, 
and a0 is the yield stress. A and B are shape factors 
expressed by the Eshelby tensor [2], elastic moduli of 
the matrix and second phase (C#kt and C*k~) [7]. E0(o -A) 
involves the energy term associated with disturbed 
external stress field due to the rigidity effect, and is 
independent of 5*. 

From the equilibrium condition of the system [1], 
the applied stress, a A (o -A or aA), is given by 

a A = A#5*f/(1 -- B f )  + a0/(1 -- Bf) (2) 

The work-hardening rate is expressed as 

0 = daA/de * = A t ~ f / ( 1 -  B f )  (3) 

where 0 denotes 0~ or 03 (suffix indicates tensile direc- 
tion, x~ or x3). Substituting Equation 2 into Equation 
1, we obtain 

a = - 1/2Akts*2fV0 + E0(a A) (4) 

The total free energy change is given by 5G = 
-A#e*fV0&* when 5" changes by 5e* in the deforma- 
tion of the material. It is obvious in this case that 
5G = -SEe~,  since the change in the elastic strain 
energy, 5Eel, is expressed by 5Eel = A # e * f V o & * .  
Therefore, the same result as the one which will be 
given in the following chapters can be obtained, even 
if the change in the elastic strain energy, 5Eel, is only 
considered in the analysis [6]. 

2.2. Dynamic  recovery mode l  
The excess (and deficit) of volume occurs in the matrix 
around an ellipsoidal second-phase particle as a result 
of the uniform plastic deformation in the matrix [6]. 
The geometrical consideration revealed that the excess 
(or deficit) of volume amounts to AV -- 3�89 in 

this case as well as in the material with spherical 
second-phase particles in which the uniform plastic 
strain occurs [6]. e* is identical to the engineering 
plastic strain, ~, when no recovery occurs. The number 
of atoms, n, involved in A V and the corresponding 
value without recovery, no, are respectively given by 

n = AV/f~ - 3~*V/(3s no - 3�89163 (5) 

where f~ is the atomic volume of matrix phase. If 
Equation 4 is rewritten using Equation 5, G is also 
expressed by 

G = - 3 A l m Z n 2 / ( 2 V )  + Eo(a A) (6) 

It is considered that the Gibbs free energy of the 
system decreases by dG when atoms, dn, are emitted 
from region with excessive volume and are absorbed 
to' that with deficit of volume. The difference in chemi- 
cal potential between the emission and absorption 
sides of atoms, Akt, is then given by 

Aft = -- dG/dn = 3Al~n~2/V (7) 

The flux of atoms, J, in general form is expressed as 
follows, with the average diffusion distance of atoms, 
L. 

D 3Al~nF2D 
J - f~kT gradA# - k T L V  (8) 

D, k and T are diffusion coefficient, Boltzmann's con- 
stant and absolute temperature, respectively. The 
emission rate of atoms, [dn/dt], is given by 

dn I 3 A p n ~ D S  
- ~  - S J  = k T L F  (9) 

where S is the total cross section of diffusion. D is Dv 
(volume diffusion coefficient) for the recovery con- 
trolled by volume diffusion of atoms. D should be 
Dgb (grain-boundary diffusion coefficient) when the 
matrix-particle interface is an incoherent boundary 
and when the recovery is controlled by grain- 
boundary diffusion. 

In this study, the approximate values of S and L 
were used in the calculation which were dependent on 
aspect ratio, x, and orientation of second-phase par- 
ticle, as shown in Fig. 1, although S and L are con- 
sidered to be complex functions of them. According to 
the result of analysis in the previous study [6], L was 
taken as the average distance from region with exces- 
sive volume to that with deficit of volume for both 
volume diffusion and grain-boundary diffusion of 
atoms. It was assumed that S for volume diffusion, Sv, 
was of the order of maximum cross-section of a 
second-phase particle normal to the direction of atom 
migration, because a high stress concentration occurred 
only in the vicinity of it. S for grain-boundary dif- 
fusion, Sgb, was approximated to be of  the order of the 
maximum cross-section of the particle-matrix inter- 
face perpendicular to the direction of atom diffusion. 

In tensile deformation, the increase of excess (or 
deficit) of atoms with time, dno/dt, can be defined from 
Equation 5 corresponding to the plastic strain rate, 
(=de~dO. Since excessive atoms are decreased by 
dn/dt  in the recovery process (Equation 9), the total 
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Figure 1 Values  of  S and  L used 

in the ca lcula t ion .  

migration rate of atoms, dn/dt ,  is given by 

dn/dt  = dno/dt - [dn/dt] 

3 ~ Vg 3AI~QDS 
- n = B -  C n  (10) 

3f~ k TL  V 

where B = 3~'Vg/(3Q) and C = 3AI~f~DS/(kTLV) .  
This differential equation of  primary reaction has the 
same form as that of the previous study [6], because 
the uniform accommodation of  the misfit strain is also 
assumed in this study. C is defined by shape, size and 
orientation of a second-phase particle and by the 
recovery process. Table I shows the approximate 
values of C and L used in the calculation when the 
volume of a second-phase particle is kept constant (i.e. 
V = 4~a2c/3 = 4rca*3/3 = const.). 

If  Equation 10 is solved under the initial condition 
of n = 0 for t = 0 when g is constant, the solution of 
n is given by 

n = (B /C)  {1 - e x p ( - C t ) }  

= (B/C)  { 1 - exp ( -  C~/g)} (11) 

Substituting Equation 11 into Equation 4 and 
rearranging, e* is expressed by 

a* = (g/C) {1 - exp ( -Ca/g)}  (12) 

The stress-strain curve which incorporates the recov- 
ery effect is given by substituting Equation 12 into 
Equation 2. 

a__L___0 aA = Alz f  g {1 -- exp(--Ce/g)} + 1 
1 - - B f C  - B f  

(13) 

The work-hardening rate in this case is also expressed 
a s  

da A A # f  
| = d~ = 1 - Bf  exp ( -C~/g)  (14) 

where | denotes 01 or | (suffix indicates tensile 
direction, xl or x3). 

3. Numerical  calculat ion of 
work -harden ing  rate 

Figs 2 and 3 show the work-hardening rate against 
aspect ratio, x, on the material with second-phase 
particles for f = 0.05 and e = 0.01 (in either case 
with or without the dynamic recovery). The volume 
of a second-phase particle was kept constant in 
this calculation (4~a%/3 = 4r~a .3 = const.). The num- 
erical values used in the calculation are a* = 5 x 
10-8m, 6 ~ 2b = 5.10 x 10-1~ D v = 8.23 x 
10-2~ (923K) [6], Dg b = 1.05 • 10-17m2sec -1 
(723K) [8], f~ = 7.10 • 10-6m3mol l, # = 5.83 x 
104MPa, v* = v = 0.30, andg = 1.33 • 10-4sec -l. 
The work-hardening rate in those figures was nor- 
malized by dividing the calculated value by the rigidity 
of matrix, #. In the absence of dynamic recovery, as 
indicated by dotted lines in the figures, the work- 
hardening rate increases with an increase in the ratio 
of rigidity of second phase to that of matrix phase 
(rigidity ratio), m (=#* /# ) ,  whereas it has a small 
value when aspect ratio (x) is close to unity. The 
work-hardening rate of the material is strongly 
affected by the dynamic recovery. In the recovery 
controlled by volume diffusion of atoms, the 

T A B L E  I Values  of  C used in the ca lcu la t ion  

X 

s~'3 = - 2e*l = -- 2s~'2 = - ~* 

x < l  x = l  x > l  

= -2e~ '  3 = - ~ *  

x X 1  

Volume  C/9AI~f~D v I 1 
diffusion 4k T , z  a x 0 *2 

G r a i n - b o u n d a r y  C/9 A p.QDgb 5 I I 
diffusion 2 k T  a .3 a .3 

1 
a* 2 x x] 

1 
a*3 x 

(x2) ] 

a ~2  

l + x  
2a .3 

6 = g r a i n - b o u n d a r y  th ickness  ( ~  2h, b: m a g n i t u d e  of  Burgers  vector).  
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Figure 2 The work-hardening rate against aspect ratio, x, on the 
material with second-phase particles (the dynamic recovery is con- 
trolled by volume diffusion of atoms in this case). ( ) Recovery 
by volume diffusion, ( - - - )  without recovery. 
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Figure 3 The work-hardening rate against aspect ratio, x, on the 
material with second-phase particles (the dynamic recovery is con- 
trolled by grain-boundary diffusion in this case). ( ) Recovery 
by grain-boundary diffusion, (- -) without recovery. 

work-hardening, rate decreases with a decrease of  x 
when x3 is the tensile axis, and also decreases with an 
increase of x when x~ is the tensile direction. The 
decrease in work-hardening rate is more remarkable 
with larger values of  the rigidity ratio, m (Fig. 2). 
Further, in the recovery controlled by grain-boundary 
diffusion, the effect of  aspect ratio (x) on the work- 
hardening rate is somewhat analogous to that with the 
recovery governed by volume diffusion when x3 is the 
tensile axis. The effect of dynamic recovery is relatively 
small when x~ is the tensile axis and x is close to unity. 

Thus, it is found that the work-hardening behav- 
tour of  the material at high temperature depends not 
only on the aspect ratio, x, the rigidity ratio, m, or the 
orientation of second phase, but also on the con- 
trolling process of  recovery. It is also pointed out that 
a large value of  m does not always lead to a large 
work-hardening rate. This may be attributed to the 
fact that a large m results in a large elastic strain 
energy and the dynamic recovery is thereby promoted, 
and because the volume of  a second-phase particle was 
kept constant in the calculation. It should be noted 
that the pre-existing strong dislocation structure [9] or 
the plastic relaxation in the vicinity of  second-phase 
particles [1] can affect the recovery process around 
particles in the high-temperature deformation. 

Fig. 4 shows the effect of particle size of  second 
phase on the work-hardening rate of  the material at 
high temperature. The work-hardening rate decreases 
with a decrease of  particle size from 2a* to a * / 2  owing 
to the enhanced recovery. Further, a large rigidity 
ratio (m) does not necessarily lead to a large work- 
hardening rate, because both a change in aspect ratio 

and a decrease of  particle size also affect the dynamic 
recovery around particles. On the high-temperature 
deformation of  the metallic material with second- 
phase particles, it was predicted from the results of  
calculations in this study that the effect of  decreasing 
the particle size is identical to that of  decreasing the 
strain rate, increasing the plastic strain in the matrix, 
and increasing the deformation temperature on the 
work-hardening rate, and that those consistently 
decrease the work-hardening rate of  the material with 
second phase at high temperature. 

4. Results of calculation and 
experiment in high-temperature 
deformation 

A tensile test was performed on austenite 21Cr-  
4 N i - 9 M n  steel with rod-like M23C 6 carbides, which 
has almost the same rigidity and Poisson's ratio as 
those of the matrix phase (p* = /x, v* = v) [6], under 
a constant strain rate of 1.33 x 10-4sec -1 in the tem- 
perature range 306 to 1073K (33 to 800~ 
2 1 C r - 4 N i - 9 M n  steel in this study has the basic com- 
positions of  0.51% C, 0.40% N, 20.22% Cr, 3.90% Ni 
and 8.75% Mn. The steel was directly quenched into a 
furnace maintained at 1173 K (900 ~ C) and was then 
aged for 108 x 103see (30h) to develop 10vol % rod- 
like M23C 6 carbides (a = 5.55 x 10-Sm). 

Fig. 5 shows the work-hardening rate at ~ = 0.01 
in the rapid hardening region against test temperature. 
A considerable contribution of  solid-solution harden- 
ing can be expected in this steel with a large amount 
of  carbon and nitrogen. This contribution at elevated 
t e m p e r a t u r e ,  (0sol)T, was then calculated for aged steel 
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Figure 4 Effect of particle size on the work-harden- 
ing rate of the material with second-phase particles 
at high temperature (m = p*/#, v* = v = 0.30, 
f = 0.05, e = 0.01 and i = 1.33 x 10-4sec-l). 

using the following equation [6]: 

(/AT ) (CT~'/2(MPa) (15) 
(0,ol)T = 5970 ~ \Col  

when #RX and #T are the rigidity of matrix phase at 
room temperature and at elevated temperature, 
respectively. The rigidity and Poisson's ratio of 
AISI316 steel at elevated temperature were used in the 
calculations in this study [10], because those values are 
still unknown in 21Cr -4Ni -9Mn steel. Co and CT are 
the concentration of solute atoms dissolved in the 
matrix for solid solution and for aged steel, 
respectively, c0 = 3.91 at % and CT = 1.30 at % were 
obtained by dint of X-ray analysis [11]. The result of 
calculations using Equation 15 is also shown in Fig. 5. 

Fig. 6 shows the temperature dependence of the net 
work-hardening rate due only to the presence of rod- 
like M23 C 6 carbides and that of the calculated value. 
The experimental and calculated values previously 
obtained for the material with spherical M23C 6 

carbides [6] are also shown in this figure. The experi- 
mental value in the figure was obtained by subtracting 
the contribution of solid-solution hardening, cal- 
culated from Equation 15, from the experimental 
result and then being temperature-compensated. The 

14 

12 

"o 
0 10 

c_ 8 

o 6 

~3 
X Z  

O 

2 

~ o - . . ~  21Cr-4Ni - 9M n 

o ~ Experimental value 

S= 0.01 o ~  o 
~= 1,,,~3 X'{d 4 SeC ~'1 " ~  

a = 5"55xl(58m X 
x=lO 
f=0.1o \ o  

/,(O,o~)T X 
0 i ~ i i , i r i i 

500 500 600 700 800 900 1000 1100 1200 

Temperature (K) 

Figure 5 The work-hardening rate against temperature on austenitic 
21Cr-4Ni-9Mn steel with rod-like M23C 6 carbides. 
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decrease in the work-hardening rate due to dynamic 
recovery occurs at higher temperature in the material 
with rod-like M23C6 carbides (x = 10, a = 5.55 x 
10-sin) than in that with spherical M23C6 carbides 
(x = 1, a = 5.3 x 10-Sm). It was assumed in this 
calculation that the dynamic recovery is controlled 
by volume diffusion of atoms. Other physical 
constants used are D v = 1.8 x 10 -s exp ( - 2 5 3 k J  
m o l - ~ / R T ) m  2 sec -I [6], b = 2.55 x 10-1~ [6], and 

= 7.10 x 10-6m3mol-~ [6]. The calculated value 
from Equation 14 (| or 03) was normalized by the 
value without recovery (01 or 03) (Equation 3), 
namely, ~1 = | and ~)3 = 03/03. The experi- 
mental data lie between the calculated values, where 
the tensile directions are Xl (Ol) and x3 (O3), respec- 
tively. Then, the orientation of second-phase particle 
was taken into account, provided that one-third of the 
carbides lie in parallel with the tensile axis (03) 
and the rest are normal to the tensile axis (O1). 
The average work-hardening rate is given by 
| = (03 + 200/3.  The corresponding value with- 
out recovery is expressed as 0a~ = (03 + 201)/3. The 
normalized value, O (=  Oar/ 0av), is also shown in 
Fig. 6. This value is very close to the experimental 
one, while it is somewhat larger than that observed in 
the high-temperature range. 

Fig. 7 shows the calculated and experimental 
stress-strain curves after yielding of an aged 21Cr- 
4Ni -9Mn steel with rod-like M23C 6 carbides. The 
orientation of second-phase particle was also taken 
into account in the calculation, assuming that the 
averaged stress is given by (a~ + 2a~)/3. The contri- 
bution of solid-solution hardening to the work- 
hardening rate of the material was estimated by the 
following equation [6]: 

a s --  /AT (CT~I/2 (940E0"066 --  564)(MPa) 
/ART \Col  

(e > 0.0005) (16) 

The calculated value shown in the figure also involves 
the contribution of solid-solution hardening, ao, esti- 
mated from Equation 16. A good correlation is found 
between the result of calculation and that of experi- 
ment in this material up to small plastic strain below 
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Figure 6 The normalized work-hardening rate by 
calculation and the one of  experiment on austenitic 
2 1 C r - 4 N i - 9 M n  steel with rod-like M23C 6 car- 
bides. (O) Experimental value. Calculated value; 
( - - )  0,, (-- - - - )  02, ( - - - - - )  0~ 

about 0.01, but the calculated stress is higher than the 
experimental value, especially at larger plastic strain 
and lower temperature. This discrepancy may be attri- 
buted to the fact that the model used in this study does 
not involve the effect of another recovery process such 
as plastic accommodation around second-phase par- 
ticles [1]. The model would be applicable up to higher 
strain in the material deformed at lower strain rate, 
because more rapid diffusional recovery might be 
expected to delay the onset of  plastic relaxation. 

Fig. 8 shows the calculated and experimental stress- 
strain curves after yielding of  aluminium containing 
3 .03vol%A1203(SAP)(a  = 3.2 x 10-Sm, x = 0.3) 
in the tensile deformation [9, 12]. It was assumed in the 
calculation that the dynamic recovery is controlled by 
grain-boundary diffusion at 293 K (20 ~ C), while it is 
governed by volume diffusion at 473 K (200 ~ C). The 
physical constants used are p = 25.9 GPa (293 K), 
23.4GPa (473K) [13], v = 0.35 (293K, 473K) [13], 
#* = 149 GPa (293 K), 147 GPa (473 K) (those values 
were calculated from the data given by Muramatsu 
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Figure 7 The calculated stress-strain curve after yielding and that 
obtained by experiment on austenitic 2 1 C r - 4 N i - 9 M n  steel with 
rod-like M23 C6 carbides. ( ) Experimental and ( - - Q  calculated 
values. 

[13] and Shiraki [14]), Dv = 3.5 x 10-6exp( - 120.3kJ 
tool- 1/R T)m 2 sec- ~ [4], Og b = Dp = 10- 6 exp ( - 66.9 kJ 
mol-~/RT)m2sec -j [4], f~ = 10.03 = 10-6m3mol 
[15] and b = 2.70 x 10-1~ [15]. Poisson's ratio of  
the second phase was assumed to be the same as that 
of matrix phase (v* = v). The orientation of second- 
phase particle was also taken into account as before, 
assuming that one-third of  A12 03 particles have their 
broad surfaces normal to tensile axis (a3A3) and the 
rest have the surfaces in parallel with tensile axis 
(a~l). Further, the strength of  pure aluminium was 
also added to the calculated value [9]. The result of  
the calculation agrees well with that of experiment 
for small plastic strain below about 0.01 both at 293 
and 473 K. This may imply that the recovery process 
is governed by dislocation climbing at the mat r ix-  
particle interface at 293 K, while it is controlled by 
climbing of  dislocation in the matrix at 473 K. 

As is known from the above result, a good correla- 
tion was found between the result of calculation and 
that of experiment in metallic materials with ellip- 
soidal second-phase particles. The assumption that 
the misfit at the interface of second-phase particles 
would be uniformly accommodated by diffusion of  
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Figure 8 Stress-strain curve after yield on SAP. ( ) Experi- 
mental value , ( - -  - - )  pure aluminium, ( - - )  calculated value. 
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atoms, seems to be almost satisfied in the dynamic 
recovery process. The dynamic recovery model used in 
this study involves no ambiguous parameters, and 
therefore, the high-temperature deformation of metal- 
lic materials with second-phase particles can be 
calculated using the physical constants including the 
rigidity and Poisson's ratio of the second phase and 
those of the matrix phase, and the diffusion coefficient, 
if only shape, size and volume fraction of the particles 
are known. Further, it is also possible to know the 
controlling mechanism of the dynamic recovery by 
comparing the calculated value based on the 
micromechanics model with the experimental result. 

5. Conclusion 
The high-temperature work-hardening behaviour of 
the metallic material containing ellipsoidal second- 
phase particles has been analysed using a continuum 
mechanics model which incorporated the dynamic 
recovery controlled by volume diffusion or grain- 
boundary diffusion of atoms. A reasonable correla- 
tion was found between the result of calculation based 
on the model and that of experiment on metallic 
materials up to a plastic strain below about 0.01, but 
the calculated stress is higher than the observed stress 
at larger plastic strain and lower temperature, because 
the model does not include any other recovery 
processes. 

The dynamic recovery model in this study does not 
involve any ambiguous parameters. Therefore, one 
can calculate the work-hardening behaviour of the 
material at high temperature, using only physical con- 
stants including shape, size and volume fraction of 
second phase, elastic moduli of second phase and 
matrix, and the diffusion coefficient. The present 
model is applicable to the understanding of high- 
temperature deformation behaviour or to the predic- 
tion of the possible recovery mechanism of metallic 
materials with ellipsoidal second-phase particles. 
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